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ABSTRACT 
 
 

ecal coliforms (FCs) are generally used as indicators 
of fecal pollution in water systems. High levels of FC 
pollution in water bodies may also be associated with 
antibiotic resistance. Escherichia coli, a member of the 
FC group, is generally commensal and harmless. 

However, some strains can cause various diseases in humans. 
The prevalence of antibiotic-resistant E. coli has been reported 
in several river systems worldwide. Herein, we report the most 
probable number (MPN) of FC and E. coli and the first detection 
of blaTEM, blaSHV, and tetA antibiotic resistance genes (ARGs) 
as well as ARG combinations (i.e. blaTEM + tetA and blaSHV + 
tetA) in E. coli isolates from river waters with high levels of FC 
in Tacloban City. MPN was determined using a multiple-tube 
fermentation technique, and ARG was detected using 
polymerase chain reaction (PCR). Results show that the 
Bagacay River had the highest MPN of FC and E. coli (both 

>160,000 MPN/100 mL), followed by the Burayan Creek 
(>160,000 MPN/100 mL; 160,000 MPN/100 mL), the 
Mangonbangon River (92,000 MPN/100 mL; 54,000 MPN/100 
mL), and the Tigbao River (35,000 MPN/100 mL; 24,000 
MPN/100 mL). Among the 113 uidA gene-confirmed E. coli 
isolates, blaTEM, blaSHV, and tetA were detected in 39 (34.5%), 7 
(6.2%), and 83 (73.5%) E. coli isolates, respectively. Moreover, 
34 (30%) of the isolates possess both blaTEM and tetA, and five 
(4.4%) of the isolates have both blaSHV and tetA. These results 
imply that the rivers are unsafe for anthropogenic use and the 
presence of ARGs in E. coli isolates pose a threat for locals. 
Hence, the public is urged to ensure safety and awareness in 
relation to these water environments. Further monitoring and 
source tracking are recommended to enhance environmental and 
public health safety among locals. 
 
 
INTRODUCTION 
 
Fecal coliforms (FCs) are a subset of the total coliform (TC) 
bacteria that primarily originate in feces (US EPA 2012). FCs, 
also known as thermotolerant coliform bacteria (Cisneros 2011), 
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generally indicate the magnitude of fecal pollution and sewage 
contamination in aquatic environments (Gokul et al. 2019). FCs 
are generally not harmful, but their presence in a particular 
environment suggests the coexistence of other pathogens that 
can also be found in human and animal feces (US EPA 2012; 
Mishra et al. 2018). 
 
Escherichia coli is a species within the FC group and has been 
recommended as the best indicator of health risk in waters 
(Cookson et al. 2022). Similar to FCs, E. coli thrives in the guts 
of humans and animals (Martinson and Walk 2020). E. coli is 
generally commensal and harmless, but also has pathogenic 
forms (pathotypes), such as the extraintestinal pathogenic E. coli 
(ExPEC) (Manges et al. 2019), adherent invasive E. coli (AIEC) 
(Mirsepasi-Lauridsen et al. 2019), and Shiga-toxin producing E. 
coli (STEC) (Breyer et al. 2022; Cookson et al. 2022), among 
others. Pathogenic E. coli may cause a wide array of diseases. 
Although they mainly thrive in the vertebrate gut, they can also 
be extraintestinal opportunistic pathogens (Denamur et al. 2021; 
Wells and Whiteford 2022). Bacteremia and urinary tract 
infection (Bonten et al. 2021; Haghighatpanah and Mojtahedi 
2019) are some of the extraintestinal diseases caused by E. coli. 
Antibiotics and antimicrobials are used to treat infected patients. 
However, recent studies show that E. coli exhibits resistance 
against the antibiotics and/or antimicrobials making it difficult 
or impossible to treat them (CDC 2022). Antibiotic-resistant E. 
coli has been observed to be prevalent in humans, animals, food, 
and environment (Pormohammad et al. 2022). 
 
Antibiotic resistance can be associated with FCs in aquatic 
environments (Reynolds et al. 2020). Freshwater bodies, 
especially rivers, play an important role in disseminating 
antibiotic-resistant E. coli (Al Salah et al. 2020; Amarasiri et al. 
2020; Reddy et al. 2022). River waters accelerate the occurrence 
of antibiotic resistance genes (ARGs) and mobile genetic 
elements (Reddy et al. 2022), which can be transmitted to other 
pathogens mainly through horizontal gene transfer (HGT) (Khan 
et al. 2013; Jian et al. 2021; Nava et al. 2022). bla is an ARG 
that encodes for β-lactamase (Perez-Llarena et al. 1997), which 
inactivates β-lactam antibiotics (Majiduddin et al. 2002), such as 
penicillins, cephalosporins, carbapenems, and monobactams. 
On the other hand, tetA is an ARG that codes for resistance 
against tetracycline antibiotics (Jahantigh et al. 2020; Perewari 
et al. 2022). Furthermore, river waters can be discharged to 
marine environments and contaminate seafoods (Ghosh et al. 
2019; You et al. 2023), which implies serious problems in 
foodborne diseases (Beyari et al. 2021; Kusunur et al 2022). 
These occurrences are not well monitored by authorities 
responsible for controlling water quality (Grenni 2022). Hence, 
river waters are considered as emerging hotspots of antibiotic 
resistance especially in the urban setting (Al Salah et al. 2020; 
Mishra et al. 2018; Nava et al. 2022). The prevalence of 
antibiotic-resistant FCs in the rivers varies according to season 
and geographic location (Mishra et al. 2018). 
 
Tacloban City is the capital city of Leyte, located in the Eastern 
Visayas region (Region VIII) of the Philippines. It has a low 
elevation and is boarded by mountains on its north and west, San 
Juanico Strait on its east, and San Pedro Bay on its south 
(Lagmay et al. 2015). The city is situated in a geographic 
location where rainfall is evenly distributed throughout the year, 
and with no dry season (Type IV weather classification) (JICA 
2015; Giles et al. 2019; NEDA 2021). Tacloban City is a home 
of more than 250,000 people. The city’s strategic location makes 
it a center of multiculturalism of people from different parts of 
Eastern Visayas and even the Philippines. There are six major 
hospitals in the city, making it the healthcare hub of the region. 
Years after being devastated by Super Typhoon Haiyan 
(Yolanda), the city showed significant improvements in terms of 
infrastructures that cater primarily to the business and economic 

sector, thus attracting more people in the city for either 
residential or recreational purposes (City Government of 
Tacloban 2019). 
 
Anthropogenic activities, such as tourism (Soumastre et al. 
2022) and open defecation (Niyoyitungiye et al. 2020), further 
aggravate the magnitude of FC contamination and the 
prevalence of virulence factors (Soumastre et al. 2022; Xie et al. 
2023; You et al. 2023). Domestic wastewater and livestock 
sewerage can be primary sources of FC pollution (Paule-
Mercado et al. 2022; Xie et al. 2023), in addition to regional 
development and rapid urbanization (Zhang et al. 2020; Zhang 
et al. 2021) and population increase (Li et al. 2022). Hence, 
despite the advancements exhibited by Tacloban City, it may 
also imply the high risk of FC contamination and dissemination 
of antimicrobial resistance in the rivers within the city. To the 
best of our knowledge, no known scientifically published 
literature is available on the prevalence of FC and antibiotic 
resistance in the city’s aquatic environments before this study. 
In this study, we report the prevalence of FCs and ARGs (i.e., 
blaTEM, blaSHV, and tetA), as well as ARG combinations (i.e. 
blaTEM + tetA, and blaSHV + tetA) harbored by E. coli isolates 
from four selected river waters of Tacloban City. 
 
 
MATERIALS AND METHODS 
 
Sampling sites 
Four river waters in the city, namely, Bagacay Creek, Tigbao 
River, Mangonbangon River, and Burayan Creek, were selected 
in this study. These were selected in relation to hospitals and 
household areas that are possible sources of FCs and antibiotic 
resistance. Bagacay Creek, Mangonbangon River, and Tigbao 
River drain toward San Juanico Strait (Toda et al. 2015; 
Deocaris et al. 2022), while Burayan Creek drain toward 
Cancabato Bay. Both marine bodies of water are economically 
important for fisheries and aquaculture purposes (Toralde et al. 
2021; Yu et al. 2024). Accessible and relatively equidistant 
sampling points in relation to the city’s coastline were 
strategically selected to ensure well representation of the 
geographical coverage of Tacloban City (Figure 1).  
 

 
Figure 1: Site map showing the sampling points per river. Coordinates 
(lat, lon): Bagacay Creek (11.2870626996844, 124.95868383174), 
Tigbao River (11.2575733409783, 124.968835302344), 
Mangonbangon River (11.2481601882399, 124.995128898999), 
Burayan River (11.2106261983878, 125.014625334664). 

 
Water sample collection 
Sterile water samplers were used to collect 680 mL of water 
samples. The samples were then contained in sterile glass jars, 
which were then stored in an ice chest maintaining a cool 
temperature and were immediately transported to the Regional 
Standards and Testing Laboratory of the Department of Science 
and Technology Regional Office VIII in Palo, Leyte for FC and 

https://www.sciencedirect.com/science/article/pii/S2212420914000922?casa_token=2kNfpO_UTIcAAAAA:mZHHKy4rerfSWmp30XevLrYJb9y6SrNIHJR4TUUDAp5GWvuoBGww1_l-7xJP0RCLgoLDm8_UfcHZ#ab0005
https://tacloban.gov.ph/
https://tacloban.gov.ph/
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.researchgate.net/profile/Luigi-Toda/publication/292675192_Assessing_and_mapping_barangay_level_social_vulnerability_of_Tacloban_City_and_Ormoc_City_to_climate-related_hazards/links/56eab62c08ae7858657ff2d0/Assessing-and-mapping-barangay-level-social-vulnerability-of-Tacloban-City-and-Ormoc-City-to-climate-related-hazards.pdf
https://iwaponline.com/h2open/article/5/3/412/89595/Assessment-of-heavy-metal-levels-in-an-urban-river
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pjns.upv.edu.ph/wp-content/uploads/2022/06/20-31.-PJNS-2021-B01_BioEco_Green-Mussel_Toralde-et-al..pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/pjns.upv.edu.ph/wp-content/uploads/2022/06/20-31.-PJNS-2021-B01_BioEco_Green-Mussel_Toralde-et-al..pdf
https://link.springer.com/article/10.1007/s13762-023-04982-x
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E. coli quantification and isolation.  
 
FC and E. coli quantification 
The most probable number (MPN) of FCs and E. coli per 100 
mL of water sample was determined through multiple 
fermentation tubes method following the protocols stated in the 
Standard Methods for the Examination of Water and Wastewater, 
23rd edition (APHA, AWWA, WEF 2017). Briefly, 10 mL of 
water sample was serially diluted up to 10−5 in sterile peptone 
water. Moreover, 10 mL of diluted samples were pipetted to 
tubes containing 10 mL double-strength lauryl sulfate broth 
(LSB) (HiMedia, India). Vigorous shaking was done to the 
water bottles prior to dispensing, to ensure well representation 
of the samples. The LSB tubes containing the inoculum were 
incubated at 35°C for 24 to 48 h. Tubes indicating the presence 
of coliform growth (i.e., presence of bubbles for gas production 
and the broth’s color change to yellow for acidic reaction) were 
identified. Two loopfuls of inoculum from the LSB tubes 
positive for coliform growth were inoculated into E. coli (EC) 
broth medium (HiMedia, India) and tryptone water (Merck, 
USA) and were incubated at 44.5°C for 24 h. EC broth medium 
tubes indicating the presence of fecal coliform growth (i.e., 
presence of bubbles) were counted. To detect the presence of E. 
coli, an indole-production test was performed on the incubated 
tryptone water by applying three to five drops of Kovac’s 
reagent. The MPN/100 mL quantities were then determined 
based on the scale indicated in Standard Methods for the 
Examination of Water and Wastewater, 23rd edition (APHA, 
AWWA, WEF 2017). 
 
E. coli isolation 
Following the procedures of Kumar et al. (2005), Lima (2017), 
Phyo (2019), and Verawaty et al. (2020), a loopful of inoculum 
from the EC broth medium tubes with positive indication of E. 
coli was streaked on eosin methylene blue agar (EMBA; Merck, 
USA) plates and was incubated at 37°C for 18 to 24 h. Colonies 
with green-metallic sheen growing on the EMBA plates were 
further inoculated on nutrient agar plates for purification and 
were incubated for another 18 to 24 h. Purified isolates were 
further inoculated to tryptic soy broth (TSB; Merck, USA) 
medium contained in sterile 1.5 mL microcentrifuge tubes and 
were incubated at 37°C for another 18 to 24 h. Twenty percent 
of triple-sterilized glycerol was loaded to the TSB tubes, 
vortexed, and stored in the freezer until transport to the 
Pathogen–Host–Environment Interactions Research Laboratory 
(PHEIRL) of the Institute of Biology, University of the 
Philippines Diliman for further analyses. Supplementary Figure 
1 describes the procedural interconnection of FC and E. coli 
MPN determination and E. coli isolation. Packaging and 
transport of the isolates were carried out applying the protocols 
of the International Air Transport Association. 
 
DNA extraction 
A loopful of inoculum was taken from the cultures preserved in 
glycerol stocks to fresh TSB and was incubated at 37°C for 18 
to 24 h. The DNA of the revived isolates was extracted through 
boil-lysis method (Salvador-Membreve and Rivera 2021). 
Briefly, revived isolates were centrifuged for 10 min at 10,000 x 
g. In each sample, the supernatant was decanted and the pellet 
was washed with 1 mL sterile distilled water. Bacterial cell lysis 
was performed in a heat block at 100°C for 15 min. Then, 50 µL 
of supernatant was transferred in sterile tubes accordingly, and 
refrigerated at 2°C for storage and further analyses. 
 
Amplification of uidA gene and targeted ARGs 
Detection of uidA gene was also performed in various studies, 
such as that of Martins et al. (1993), Godambe et al. (2017), and 
Salvador-Membreve and Rivera (2021), to genetically confirm 
the identity of the isolates as E. coli. uidA gene was amplified 

through polymerase chain reaction (PCR) with the conditions 
specified in Table 1. E. coli ATCC 25922 and no template mix 
were used as positive and negative controls, respectively. 
 
Table 1: The following are the specific PCR conditions applied to 
amplify uidA (ECN) gene and the ARGs. 

 
Step 

ECN1 bla2 tetA3 

Temp 
(°C) 

Time 
(min:s) 

Temp 
(°C) 

Time 
(min:s) 

Temp 
(°C) 

Time 
(min:s) 

Initial 
denaturation 

98 02:00 95 03:00 94 05:00 

Denaturation4 95 00:30 95 00:30 94 01:00 

Annealing 63 01:00 60 00:30 57 01:00 

Extension 72 01:00 72 01:00 72 01:00 

Final 
extension 

72 05:00 72 10:00 72 07:00 

Hold 12 ∞ 12 ∞ 12 ∞ 

1Labrador et al. 2020 
2Multiplex PCR for blaTEM, blaCTX-M, and blaSHV (Monstein et al. 2007). 
3Ng et al. 2001 
4Number of cycles: 35 for uidA and tetA and 29 for bla 

tetA, blaTEM, blaCTX-M, and blaSHV were the targeted ARGs in this 
study due to the high prevalence rates of E. coli with tetracycline 
resistance, and extended-spectrum β-lactamase (ESBL) 
production. blaTEM, blaCTX-M, and blaSHV ARG amplification 
was done through multiplex PCR, while tetA was amplified 
through singleplex PCR (Salvador-Membreve and Rivera 2021) 
with the conditions specified in Table 1. Salmonella sp. was used 
as positive control for blaTEM and blaCTX-M, while Klebsiella 
pneumoniae (ATCC 700603) was used as positive control for 
blaSHV. A tetA-positive E. coli isolate provided by PHEIRL was 
used as positive control for tetA. No template mix was used as 
negative control for the ARGs. Table 2 lists the sequence of 
primers used to amplify the abovementioned genes. 

Table 2: Primer sequences of the targeted genes 
Gene Primers Reference 

ECN Forward: 5′—
GCAAGGTGCACGGGAATATT—3′ 
Reverse: 5′—
CAGGTGATCGGACGCGT—3′ 

Labrador et 
al. 2020 

blaTEM Forward: 5′—
TCGCCGCATACACTATTCTCAGAAT
GA—3′ 
Reverse: 5′—
ACGCTCACCGGCTCCAGATTTAT—3′ 

Monstein et 
al. 2007 

blaCTX-M Forward: 5′—
ATGTGCAGYACCAGTAARGTKATGG
C—3′ 
Reverse: 5′—
TGGGTRAARTARGTSACCAGAAYCA
GC—3′ 

 Boyd et al. 
2004 

blaSHV Forward: 5′—
ATGCGTTATATTCGCCTGTG—3′ 
Reverse: 5′—
TGCTTTGTTATTCGGGCCAA—3′ 

Paterson et 
al. 2003 

tetA Forward: 5′—
GCTACATCCTGCTTGCCTTC—3′ 
Reverse 5′—
CATAGATCGCCGTGAAGAGG—3′ 

Ng et al. 
2001 

 
Agarose gel electrophoresis 
Three microliters of generated amplicons and controls and 5 µL 
of 100 bp DNA ladders (Hyperladder™ Bioline, USA) were 
loaded into 2% agarose gel stained with SYBR safe DNA gel 
stain (Invitrogen, USA). Visualization of the amplicons was 
done through gel electrophoresis for 30 min at 280 V in Tris-
Acetate-EDTA (TAE) buffer and through UV transillumination. 
 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629170/
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/saudijournals.com/media/articles/SJLS-47-227-232-c.pdf
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RESULTS AND DISCUSSION 
 
Prior to this study, levels of dissolved oxygen and heavy metal 
contamination were investigated in Bagacay Creek (Garcia 
1972) and Mangonbangon River (Decena et al. 2018; Deocaris 
et al. 2022), respectively. Moreover, species A rotaviruses were 
detected in Mangonbangon River and Burayan Creek (Imagawa 
et al. 2020). In this study, we report the FC and E. coli MPN 
counts and the presence of blaTEM, blaSHV, and tetA ARGs from 
the four selected water bodies in Tacloban City. 
 
FC and E. coli MPN count 
As mentioned earlier, FCs are indicators of fecal pollution in 
aquatic environments. Although generally regarded as harmless, 
their presence indicates manifestation of other pathogens. E. coli 
is a member of the fecal coliform group that more accurately 
indicates fecal origin of contamination. 
 
Multiple fermentation tube tests revealed that Bagacay Creek 
had the highest MPN counts for both FCs and E. coli (both 
>160,000 MPN/100 mL), followed by Burayan Creek 
(>160,000 MPN/100 mL; 160,000 MPN/100 mL), 
Mangonbangon River (92,000 MPN/100 mL; 54,000 MPN/100 
mL), and Tigbao River (35,000 MPN/100 mL; 24,000 MPN/100 
mL). These values exceeded the acceptable levels for 
anthropogenic use based on the Department of Environment and 
Natural Resources (DENR) Administrative Order No. 2016-08, 
which ranged from <1.1 to 400 MPN/100 mL (Figure 2). 
 

 
Figure 2: MPN of FCs and E. coli. Bagacay Creek (FC and E. coli) 
and Burayan Creek (E. coli only) had counts of >160,000 MPN/100 
mL. The acceptable range for human use is <1.1 to 400 MPN/100 mL 
based on DENR Administrative Order No. 2016-08. 

MPN values of FCs that exceed the accepted standards were also 
observed in other freshwater environments. The FC counts in 
Pasig River reached up to 256,000,000 MPN/100 mL in 2018. 
Since then, the number was observed to be increasing until 2019 
(Castro and Obusan 2023). Such a trend was attributed to the 
widespread discharge of human and animal wastes and urban 
runoff especially during the rainy season. Levels of FC counts 
were also observed to be exceeding the acceptable threshold 
from 2009 to 2012 and 2019 to 2020 (Castro and Obusan 2023). 
High levels of FC counts were also reported in Laguna Lake 
from 2009 to 2012. Laguna Lake is the largest inland body of 
water in the Philippines with significant anthropological and 
economic functions. However, observable decreases became a 
trend from 2013 to 2020, especially during the years after the 
Laguna Lake Development Authority followed the acceptable 
values set by the DENR (Castro and Obusan 2023). Furthermore, 
it was predicted that fecal pollution and E. coli in Laguna Lake 
originate from sewage contamination, humans, and agricultural 
sources (de la Peña et al. 2021). FC levels were also reported to 
scale up to 160,000 MPN/100 mL in San Roque River in 
Northern Samar (Jarito and Malabarbas 2021) and Padada 
Watershed in Davao del Sur (Branzuela et al. 2022). FC levels 
in both water systems are associated with domestic, recreational, 

industrial, and agricultural practices. Moreover, an interesting 
trend was observed in Orani river systems in Bataan, where FC 
counts were highest at the midstream, followed by downstream 
and upstream areas. Principal component analysis revealed that 
high nitrogen-containing compounds were observed in high 
microbial loads. This trend may be attributed to the process of 
decomposition (Rabadon and Corpuz 2021). 
 
Relatively lower risk levels with respect to TC counts were 
reported in Pagbanganan River, Salog River, and Palhi River in 
Baybay City, Leyte. These rivers were recommended to be used 
with caution and limitation due to elevated levels of TCs 
(Bitacura 2019; Lumagbas and Bitacura 2022). A similar trend 
was also observed in Bongoy River in Romblon, as the river was 
categorized as “moderately impacted/polluted” based on the 
surveyed coliforms and macroinvertebrates (Maulion 2020). 
 
Detection of blaTEM, blaSHV, and tetA 
This study reveals the presence of ARGs, specifically blaTEM, 
blaSHV, and tetA, as well as blaTEM + tetA and blaSHV + tetA ARG 
combinations in E. coli isolates from the river waters of 
Tacloban City. Thirty (26.5%) uidA gene-confirmed E. coli were 
isolated from Mangonbangon River and Bagacay Creek, while 
there were 29 (25.7%) and 24 (21.2%) from Tigbao River and 
Burayan Creek, respectively. Of the 113 uidA gene-confirmed E. 
coli isolates across the sampling sites, 39 (34.5%) and 7 (6.2%) 
of them were positive for blaTEM and blaSHV, respectively. 
Interestingly, blaCTX-M was not detected in any of the isolates. 
tetA was detected in 83 (73.5%) of the isolates. Five (4.4%) of 
the isolates possessed blaTEM only, and two (1.7%) had blaSHV 
only. Forty-four (38.9%) of the isolates had tetA only. Moreover, 
34 (30%) of the isolates possess both blaTEM and tetA, and five 
(4.4%) of the isolates have both blaSHV and tetA (Figure 3). tetA 
was mostly observed in Tigbao River (90%), followed by 
Mangonbangon River (87%), Burayan Creek (63%), and 
Bagacay Creek (53%). blaTEM was mostly detected in Burayan 
Creek (23%), followed by Mangonbangon River (37%), Tigbao 
River (31%), and Bagacay River (23%). blaSHV was the least 
prevalent among the tested ARGs across all sites, but the highest 
prevalence was observed in Bagacay Creek (13%), followed by 
Mangonbangon River (7%) and Burayan Creek. Moreover, 
blaSHV was not detected in Tigbao River (Figure 4). 
 

 
Figure 3: Overall prevalence of the ARGs showing blaTEM, blaCTX-M, 
blaSHV, and tetA, across all E. coli isolates. Among the ARGs, tetA was 
the most prevalent either exclusively detected or in combination with 
another ARG per isolate. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480802/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480802/
https://www.pjoes.com/Assessing-Heavy-Metal-Contamination-in-Surface-nSediments-in-an-Urban-River-in-the,75204,0,2.html
https://iwaponline.com/h2open/article/5/3/412/89595/Assessment-of-heavy-metal-levels-in-an-urban-river
https://iwaponline.com/h2open/article/5/3/412/89595/Assessment-of-heavy-metal-levels-in-an-urban-river
https://www.sciencedirect.com/science/article/pii/S1567134820302963#s0055
https://www.sciencedirect.com/science/article/pii/S1567134820302963#s0055
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Figure 4: Prevalence of E. coli-harbored ARGs per site. The highest 
prevalence of blaTEM and blaSHV was observed from E. coli isolates 
from Burayan Creek and Bagacay Creek, respectively. blaCTX-M was 
not detected across all sites. blaSHV was not detected in Tigbao River, 
but interestingly, this site had the highest tetA prevalence compared 
to others. 

The pattern of the prevalence rates of the targeted ARGs 
displays similarities to that of E. coli isolated from Laguna Lake 
(Salvador-Membreve and Rivera 2021) and from the Seven 
Crater Lakes of San Pablo, Laguna (Mamawal et al. 2023). tetA 
had the highest prevalence, followed by strA (an ARG for 
aminoglycoside resistance), blaTEM, and blaSHV. blaCTX-M was 
also not detected in Laguna Lake (Salvador-Membreve and 
Rivera 2021). In the case of the Seven Crater Lakes of San Pablo, 
blaAmpC had the highest percentage occurrence. blaTEM counts 
were still higher than that of blaSHV. blaCTX-M was detected in 
minimal amounts (Mamawal et al. 2023). By contrast, blaCTX-M-

15 and blaCTX-M-3 were detected in carbapenemase-producing 
Enterobacteriaceae isolated from various hospital sewage and 
river sites in Metro Manila (Suzuki et al. 2020). In addition, 
blaTEM, blaSHV, and tetA, as well as blaCTX-M, tetB, tetU, tetW, 
qnrB, and qnrS, were observed to be prevalent in broiler farms 
(Gundran et al. 2019; Imperial et al. 2022). 
 
Implications 
High FC levels and E. coli counts with the presence of ARGs in 
rivers can have substantial implications for the environment and 
public health. This may contaminate water supplies (Fernando 
et al. 2016; Mishra et al. 2018; Odonkor et al. 2020), which may 
lead to waterborne diseases (Some et al. 2021). Elevated 
contamination levels also pose risk to recreational and 
anthropogenic activities. Exposure to contaminated waters 
increases the chances of infections and other health issues 
(Fakhr et al. 2016; Nnadozie and Odume 2019). 
 
E. coli harboring blaTEM, blaSHV, tetA, and ARG combinations 
(i.e. blaTEM + tetA and blaSHV + tetA) in rivers may act as 
reservoir to facilitate these ARGs to other bacteria (Bong et al. 
2022) mainly through HGT (Grenni 2022; Kulik et al. 2023). 
This contributes to the spread of the ARGs in the environment, 
which increases the risk for the individuals exposed to the 
contaminated water (Serwecinska 2020). Individuals infected 
with E. coli or any other pathogen harboring these ARGs have 
limited treatment options (Poirel et al. 2018) since β-lactam and 
tetracycline antibiotics are most likely ineffective against these 
pathogens (Khalifa et al. 2021; Perewari et al. 2022). 
 
Increased number of these bacteria can adversely affect aquatic 
ecosystems (Oporto-Bensig et al. 2014; Paruch et al. 2019). FCs 
and other associated pathogenic organisms, especially those 
with ARGs, can be detrimental to the quality of aquaculture and 
fishing resources (Schar et al. 2021; Cid et al. 2022) implying 
the risks of economic loss and food-borne diseases (Adinortey 
et al. 2020; Islam et al. 2021; dos Santos et al. 2022; Leung et al. 
2022). Since hospitals and household areas can be sources of 
FCs and ARGs (Opisa et al. 2012; Skariyachan et al. 2015; 

Lepesova et al. 2020; Montealegre et al. 2020), these detrimental 
effects may happen to San Juanico Strait and Cancabato Bay 
since the studied rivers drain toward these two economically 
important marine water bodies. This situation is relatively 
similar to the cases of Manila Bay (Raña et al. 2017), Bandon 
Bay in Thailand (Chinfak et al. 2023), coastal area of the Red 
River in Vietnam (Le et al. 2023), and the Mediterranean Sea 
(Pepi and Forcardi 2021). 
 
 
CONCLUSION 
 
The results of this study imply that the sampled river waters are 
unsafe for human use. Caution should be exercised by the locals 
when dealing with these rivers and their associated 
environments. The high levels of FC and E. coli counts, coupled 
with the presence of ARGs and ARG combinations in E. coli 
isolates, pose a threat to the public health and environment in the 
locality. Considering the classification of the weather condition 
of Tacloban City, the FC levels are relatively similar throughout 
the year, unless changes in anthropogenic activities occur. 
Hence, further monitoring and source tracking are recommended 
to enhance environmental and public health safety among locals. 
Lastly, to the best of our knowledge, this study is the first to 
report on the detection of ARGs in E. coli isolates from river 
waters with high levels of FC counts in Tacloban City and 
perhaps also outside the Luzon area. This may contribute to the 
current existing knowledge of the prevalence of ARGs within 
the Philippines. 
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SUPPLEMENTARY INFORMATION 
 

 
Supplementary Figure 1: Workflow of FC and E. coli MPN determination and E. coli isolation 

 
A. A 680 mL of water sample was collected from the 

sampling sites, 50 mL was aliquoted from the sample, 
and 10 mL was serially diluted in sterile peptone water 
up to 10−5. 
 

B. In each dilution level, 10 mL of diluted sample was 
pipetted to 10 mL double-strength LSB and was 
incubated at 35°C for 24 h. LSB tubes were observed 
for presumptive-positive reaction. Presumptive-
positive reactions were indicated by the presence of 
bubbles trapped in the Durham tube and the color 
change of the medium into shades of yellow. The 
bubbles and the yellow-colored broth medium indicate 
the presence of gas production and acidic reaction, 
respectively. LSB tubes exhibiting the presumptive 
absence of FC were further incubated for another 24 
h. This also served as an enrichment and recovery 
phase for the thermotolerant coliforms. 

 
C. Two loopfuls of presumptive-positive LSB were 

inoculated in EC broth medium, and another two were 
inoculated in 5 mL tryptone water. Both inoculated 
media were incubated at 44.5°C for 24 h. After 
incubation, gas production, which indicates the 
presence of FCs, were observed. EC broth medium 
tubes indicating the presence or absence of gas 
production were quantified and were used to 
determine the MPN of FCs. 
 

D. Three to five drops of Kovac’s reagent were added to 
the tryptone water after incubation. The presence of E. 
coli was indicated by the appearance of a deep red 
color ring (which indicates indole production) in the 
upper layer of the tryptone water. The results of the 
indole-production test, using tryptone water, were 
used to determine the MPN of E. coli. 
 

E. At the same time, a loopful of positive EC broth 
medium paralleled with a positive tryptone water was 
streaked to EMBA plates (EMBA 1) and was 
incubated at 37°C for 18 to 24 h. From each EMBA 
plate, two well-isolated colonies with green-metallic 
sheen (GMS) were further streaked into two new and 
separate EMBA plates (EMBA 2) and were incubated 
at 37°C for another 18 to 24 h. 
 

F. A single well-isolated GMS colony was further 
streaked to nutrient agar and was incubated at 37°C for 
18 to 24 h. 
 

G. The purified presumptive E. coli isolates were 
inoculated in 1 mL TSB contained in 1.5 
microcentrifuge tubes. These were incubated at 37°C 
for 18 to 24 h. After incubation, 20% triple-sterilized 
glycerol was added to TSB tubes with growth. The 
TSB tubes were vortexed and were stored in the 
freezer until transport to PHEIRL. 

 
 
 
 
 
 
 


